Theoretical physics

Much of the theoretical work in the School compliments the experimental programs in areas such as the transport studies in semiconductors, photonics and optical communications.

One of the most exciting areas of modern theoretical physics is the modelling of the behaviour of complex systems such as climate patterns and the turbulent flow of fluids. RSPhysSE is one of the major players in the ARC Research Network for Complex Systems with many of our researchers undertaking research in this field.

The School also has strong research interests in Nonlinear optics and solitons, developing basic theories of solitons for optical systems that including all-optical information transmission lines and ultra-short pulse lasers. This work also extends to the design of specific novel planar and fibre light processing devices, including those with the potential for commercialisation.

Potential student research projects

You could be doing your own research into theoretical physics. Below are some examples of student physics research projects available in our school.

Optical nanoantennas

Antennas are at the heart of modern radio and microwave frequency communications technologies. They are the front-ends in satellites, cell-phones, laptops and other devices that make communication by sending and receiving radio waves. This project aims to design analog of optical nanoantennas for visible light for advanced optical communiction. 

Prof Dragomir Neshev, Prof Andrey Miroshnichenko

Stochastic dynamics of interacting systems and integrability

There are many interesting physical statistical systems which never reach thermal equilibrium. Examples include surface growth, diffusion processes or traffic flow. In the absence of general theory of such systems a study of particular models plays a very important role. Integrable systems provide examples of such systems where one can analyze time dynamics using analytic methods.

A/Prof Vladimir Mangazeev

Variational approach to many-body problems

In recent years there was a large boost in development of advanced variational methods which play an important role in analytic and numerical studies of  1D and 2D quantum spin systems. Such methods are based on the ideas coming from the renormalization group theory which states that  physical properties of  spin systems become scale invariant near criticality. One of the most powerful variational algorithms is the corner-transfer matrices (CTM) method which allows to predict properties of large systems based on a simple iterative algorithm.

A/Prof Vladimir Mangazeev

Time dependence of nuclear fusion

This project will allow us to understand the time-dependence of quantum tunnelling and nuclear fusion.

Dr Edward Simpson

Please browse our full list of available physics research projects to find a student research project that interests you.