Dr Andrew Kingston

Kingston, Andrew profile
Position Postdoctoral Fellow
Department Materials Physics
Research group X-ray tomography and applications group
Office phone (02) 612 50185
Email
Office Cockcroft 4 68

Machine learning for tomographic reconstruction

Machine learning (and in particular deep-learning) methods have been at the centre of amazing progress in the field of computational image analysis. In this project the student will work to develop machine-learning algorithms for tomographic reconstruction, and deploy these algorithms at the ANU CTLab imaging facility.

Dr Glenn Myers, Dr Andrew Kingston

X-ray scatter in 3D microscopes

X-ray scatter is most significant when imaging very dense/large samples: e.g. metal parts, large 3D printed components, or samples imaged on the CTLab's new "whole core" scanner. The student will develop methods to correct for its effects, both in-hardware (i.e. at the microscope) and in-software (i.e. image analysis).

Dr Andrew Kingston, Dr Glenn Myers, Prof Adrian Sheppard

Tomography of dynamic processes (3D movies)

Generating 3D volumes, i.e., tomography, of an object as it changes over time  (or evolves) is a challenging problem. The ability to achieve this would reveal new information and understanding of many dynamic processes.

Dr Andrew Kingston, Prof Adrian Sheppard, Dr Glenn Myers

Quantitative x-ray imaging with patterned illumination

In this project the student will explore a cutting-edge "speckle tracking" method for measuring X-ray phase, in which computational image analysis is used to infer the X-ray phase from deformations in a known speckle pattern. This has both theoretical and experimental components.

Dr Glenn Myers, Dr Andrew Kingston

Neutron and X-ray imaging/tomography techniques at ANSTO & Australian Synchrotron

This project involves working with scientists from imaging beamlines at the Australian Synchrotron (IMBL, XFM, MCT) and the Lucas Heights nuclear reactor (DINGO) to develop multi-modal, multi-scale, and dynamic imaging and tomography techniques alongside computational imaging scientists from ANU.

Dr Andrew Kingston, Dr Glenn Myers

Ghost imaging in the third dimension

In ghost imaging, images are formed based on photons that have never interacted with the sample. 3D ghost imaging was first performed in 2018 by scientists at ANU and international collaborators at the European Synchrotron Radiation Facility: the student will work with these scientists to further advance the field.

Dr Glenn Myers, Dr Andrew Kingston

Understanding drought-resistance in Australian plants with 3D X-ray microscopy

This project will use unique, ANU-designed 3D X-ray microscopes and state-of-the art image analysis to track physiological responses of drought-tolerant Australian plants when subjected to water stress. The results will help us understand the mechanisms that underpin drought-tolerance, helping resolve ongoing debates and helping understand which forest eco-systems that are most vulnerable to climate change, and why.

Prof Adrian Sheppard, Dr Levi Beeching, Dr Andrew Kingston

Deblur by defocus in a 3D X-ray microscope

This project will involve building a unified model of several theoretically-complex X-ray behaviours within the microscopes at the ANU CTLab, drawing from statistical and wave optics: spatial partial-coherence, refraction, and spectral interactions. The student will then apply this model to improve imaging capabilities at the ANU CTLab.

Dr Glenn Myers, Dr Andrew Kingston